

CC 8, SEM - 4 (HONS.)

METABOLISM

Thousands of chemical reactions are taking place inside a cell in an organized, well co-ordinated and purposeful manner; all these reactions are called as METABOLISM.

TYPES OF METABOLIC PATHWAY:

- **✓**Catabolic Pathway
- ✓ Anabolic Pathway
- ✓ Amphibolic Pathway

STAGES AND PHASES OF METABOLISM:

- **✓**Primary
- √Secondary
- **✓** Tertiary

lipids, nucleic acids etc.

MAJOR PATHWAYS OF CARBOHYDRATE METABOLISM

1) Glycolysis	
2) Citric Acid Cycle	
3) Gluconeogenesis	
4) Glycogenesis	
5) Glycogenolysis	
6) Hexose monophosphate shunt	
7) Uronic Acid Pathway	
8) Galactose Metabolism	
9) Fructose Metabolism	
10) Amino sugar metabolism	14

GLYCOLYSIS

EMBDEN-MEYERHOF PATHWAY (OR) E.M.PATHWAY

Definition:

Glycolysis is defined as the sequence of reactions converting glucose (or glycogen) to pyruvate or lactate, with the production of ATP

Salient features:

- 1) Takes place in all cells of the body.
- 2) Enzymes present in "cytosomal fraction" of the cell.
- 3) Lactate end product anaerobic condition.
- Pyruvate(finally oxidized to CO2 & H2O) end product of aerobic condition.
- Tissues lacking mitochondria major pathway ATP synthesis.
- Very essential for brain dependent on glucose for energy.
- 7) Central metabolic pathway
- 8) Reversal of glycolysis results in gluconeogenesis.

Reactions of Glycolysis

1) Energy Investment phase (or) priming phase

2) Splitting phase

3) Energy generation phase

Energy Investment Phase

- Glucose is phosphorylated to glucose-6-phosphate by hexokinase (or) glucokinase.
- Glucose-6-phosphate undergoes isomerization to give fructose -6- phosphate in the presense of phospho-hexose isomerase and Mg²⁺
- Fructose-6-phosphate is phosphorylated to fructose 1,6-bisphosphate by phosphofructokinase.

Splitting Phase

- Fructose 1,6-bisphosphate → glyceraldehyde 3-phosphate + dihydroxyacetone phosphate.(aldo lase enzyme)
- 2 molecules of glyceraldehyde 3-phosphate are obtained from 1 molecule of glucose

Energy Generation Phase

- Glyceraldehyde 3-phosphate → 1,3-bisphosphoglycerate(glyceraldehyde 3-phosphate hydrogenase)
- 1,3-bisphosphoglycerate → 3-phosphoglycerate (phosphoglycerate kinase)
- 3-phosphoglycerate → 2-phosphoglycerate (phosphoglycerate mutase)
- 2-phosphoglycerate → phosphoenol pyruvate (enolase + Mg²⁺ & Mn²⁺)
- Phosphoenol pyruvate → pyruvate [enol] (pyruvate kinase) → pyruvate [keto] → L-Lactate (lactate dehydrogenase)

(1) Glucose is phosphorylated to Glucose 6-phosphate

- Phosphorylated Glucose cannot get out from cell.
- · Hexokinase (having 4 Isoenzymes).
- · Glucokinase, GK in liver.
- · Irreversible.

Comparison of Hexokinase and Glucokinase

Particulars	Hexokinase	Glucokinase	
Occurrence	in all tissues	only in liver	
K _m value	0.1mmol/L	10mmol/L	
Substrate	Glucose, Fructose, Mannose	Glucose	
Regulation	G-6-P	Insulin	

(2) G-6-P is isomerised to Fructose 6-P

(3) F-6-P is phosphorylated Fructose 1,6-bisphosphate

- · The second phosphorylation
- · Phosphofructokinase-1, PFK-1

(4) F-1,6-BP cleaved to 2 Triose phosphates

Reversible

(5) Triose phosphate isomerization

 $G\rightarrow 2$ molecule glyceraldehyde-3-phosphate, consume 2 ATP .

(6) Glyceraldehyde 3-phosphate oxidised 1,3-bisphospho glycerate

(7) 1,3-BPG dephosphorylated to 3phospho glycerate

Substrate level phosphorylation

(8) Glycerate 3-phosphate mutated glycerate 2-phosphate

(9) Glycerate 2-phosphate → phosphoenol pyruvate

(10) PEP →pyruvate

- Second substrate level phosphorylation
- · irreversible

2) Pyruvate → lactate

Summary of Glycolysis

Energy production of glycolysis:

ATP production = ATP produced - ATP utilized

	ATP produced	ATP utilized	Net energy
In absence of oxygen (anaerobic glycolysis)	4ATP (Substrate level phosphorylation) 2ATP from 1,3 DPG. 2ATP from phosphoenol pyruvate	2ATP From glucose to glucose - 6-p. From fructose -6-p to fructose 1,6 p.	2 ATP
In presence of oxygen (aerobic glycolysis)	4ATP (substrate level phosphorylation) 2ATP from 1,3 BPG. 2ATP from phosphoenol pyruvate. + 4ATP or 6ATP (from oxidation of 2 NADH + H in mitochondria).	2ATP -From glucose to glucose - 6-p. From fructose -6-p to fructose 1,6 p.	8 ATP / 6 ATP (Pyruvate dehydrogenase 2NADH,ETC, Oxidative phosphorylation)

2. Regulation of Glycolysis

 Three key enzymes catalyze irreversible reactions: Hexokinase, Phosphofructokinase & Pyruvate Kinase.

1) PFK-1

The reaction catalyzed by PFK-1 is usually the rate-limiting step of the Glycolysis pathway.

This enzyme is regulated by covalent modification, allosteric regulation.

2) Pyruvate kinase

Allosteric regulation:

F-1,6-BP acts as allosteric activator;

ATP and Ala in liver act as allosteric inhibitors;

Covalent modification:

phosphorylated by Glucagon through cAMP and PKA and inhibited.

3) Hexokinase and glucokinase

- This enzyme is regulated by covalent modification, allosteric regulation and isoenzyme regulation.
- Inhibited by its product G-6-P.
- Insulin induces synthesis of glucokinase.

3. Significance of glycolysis

- Glycolysis is the emergency energyyielding pathway.
- 2) Glycolysis is the main way to produce ATP in some tissues, even though the oxygen supply is sufficient, such as red blood cells, retina, testis, skin, medulla of kidney.
- In glycolysis, 1mol G produces 2mol lactic acid and 2mol ATP.

- The process of complete oxidation of glucose to CO₂and water with liberation of energy as the form of ATP is named aerobic oxidation.
- The main pathway of G oxidation.

CLINICAL ASPECT

1) Lactic acidosis

- Normal value 4 to 15 mg/dl.
- Mild forms strenous exercise, shock, respiratory diseases, cancers
- Severe forms Impairment/collapse of circulatory system – myocardial infarction, pulmonary embolism, uncontrolled hemmorrhage and severe shock.

2) Cancer and glycolysis:

- Cancer cells increased uptake of glucose and glycolysis.
- Blood vessels unable to supply adequate oxygen HYPOXIC condition – Anaerobic glycolysis / hypoxic glycolysis – Involvement of Hypoxic inducible transcription factor (HIF).
- Treatment: Use drugs that inhibit vascularization of tumours

✓ <u>Pasteur effect</u>: Inhibition of glycolysis by oxygen (Phosphofructokinase).

✓ <u>Crabtree effect</u>: The phenomenon of inhibition of oxygen consumption by the addition of glucose to tissues having high aerobic glycolysis.

CITRIC ACID CYCLE KREBS CYCLE / TRICARBOXYLIC ACID/ TCA CYCLE

Essentially involves the oxidation of acetyl CoA to CO_2 and H_2O .

This Cycle utilizes about two-third of total oxygen consumed by the body.

Brief History:

- Hans Adolf Krebs
- 1937
- Studies of oxygen consumptiom in pigeon breast muscle.

Location of TCA

- Mitochondrial matrix
- In close proximity to the electronic transport chain.

Overview

- 65-70% of the ATP is synthesized
- Name: TCA used because at the ouset of the cycle tricarboxylic acids participate.

1. Process of aerobic oxidation

1) Oxidative decarboxylation of Pyruvate to Acetyl CoA

- irreversible;
- in mitochodria.

Pyruvate dehydrogenase complex:

```
pyruvate dehydrogenase
    E, dihydrolipoyl transacetylase
       dihydrolipoyl dehydrogenase
            thiamine pyrophosphate, TPP (VB,)
            HSCoA (pantothenic acid)
            lipoic Acid
cofactors
            NAD<sup>+</sup>(Vpp)
            FAD (VB,)
```

Pyruvate dehydrogenase complex:

The structure of pyruvate dehydrogenase complex

TPP

$$\begin{array}{c} H_2 \\ H_2C \\ S-S \\ \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -2H \\ \end{array} \\ \begin{array}{c} H_2 \\ C \\ \hline SH \\ \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -3H \\ \hline \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -3H \\ \hline \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -3H \\ \hline \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -3H \\ \hline \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -3H \\ \hline \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -3H \\ \hline \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -3H \\ \hline \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -3H \\ \hline \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline -3H \\ \hline \end{array} \\ \begin{array}{c} CH-(CH_2)_4-COOH \\ \hline \end{array}$$

2) Tricarboxylic acid cycle, TCAC

- The cycle comprises the combination of a molecule of acetyl-CoA with oxaloacetate, resulting in the formation of a six-carbon tricarboxylic acid, citrate. There follows a series of reactions in the course of which two molecules of CO, are released and oxaloacetate is regenerated.
- Also called citrate cycle or Krebs cycle.

(1) Process of reactions

Reactions of citric acid cycle

- Formation of citrate: Condensation of acetyl CoA and oxaloacetate → catalysed by citrate synthase.
- & 3) Citrate is isomerized to isocitrate → aconitase (two steps).
- 4) & 5) Formation of **\(\daggerightarrow\)**-ketoglutarate: enzyme isocitrate dehydrogenase.
- 6) Conversion of \(\daggera\)-ketoglutarate to succinyl CoA: through oxidative decarboxylation, catalysed by \(\daggera\)-ketoglutarate dehydrogenase complex.

- 7)Formation of succinate : enzyme succinate thiokinase

 GTP + ADP ←→ ATP + GDP (nucleoside diphosphate kinase)
- 8)Conversion of succinate to fumarase : enzyme succinate dehydrogenase
- 9)Formation of malate: enzyme fumarase
- 10)Conversion of malate to oxaloacetate: enzyme malate dehydrogenase.

② The net reaction of the TCAC:

acetylCoA+3NAD+FAD+GDP+Pi+2H2O

→ 2CO₂+3NADH+3H⁺+FADH₂+GTP+ HSCoA

- 3 Irreversible and aerobic reaction
- The enzymes are located in the mitochondrial matrix.

(5) Anaplerotic reaction of oxaloacetate

(2) Bio-significance of TCAC

- ① Acts as the final common pathway for the oxidation of carbohydrates, lipids, and proteins.
- ② Serves as the crossroad for the interconversion among carbohydrates, lipids, and non-essential amino acids, and as a source of biosynthetic intermediates.

- TCA cycle is strictly aerobic in contrast to glycolysis.
- Total of 12 ATP are produced from one acetyl CoA:-
- ✓ During the process of oxidation of acetyl CoA via citric acid cycle → 3 NADH & 1 FADH2.
- ✓ Oxidation of 3 NADH by electron transport chain coupled with oxidative phosphorylation results in 9 ATP, FADH2 → 2 ATP.
- ✓ One substrate level phosphorylation.

2. ATP produced in the aerobic oxidation

- acetyl CoA → TCAC : 3 (NADH+H⁺) + FADH, + 1GTP → 12 ATP.
- pyruvate →acetyl CoA: NADH+H⁺→3 ATP
- 1 G → 2 pyruvate : 2(NADH+H¹) → 6 or 8ATP

```
1mol G : 36 or 38mol ATP
(12+3) ×2+6(8)=
36(38)
```

3. The regulation of aerobic oxidation

 The Key Enzymes of aerobic oxidation The Key Enzymes of glycolysis Pyruvate Dehydrogenase Complex Citrate synthase Isocitrate dehydrogenase (rate-limiting) α-Ketoglutarate dehydrogenase

(1) Pyruvate dehydrogenase complex

(2) Citrate synthase

- Allosteric activator: ADP
- Allosteric inhibitor: NADH, succinyl CoA, citrate, ATP

(3) Isocitrate dehydrogenase

- Allosteric activator: ADP, Ca²⁺
- Allosteric inhibitor: ATP

(4) α-Ketoglutarate dehydrogenase

Similar with Pyruvate dehydrogenase complex

Oxidative phosphorylation→TCAC↑

- ATP/ADP↑ inhibit TCAC,
 Oxidative phosphorylation ↓
- · ATP/ADP↓ , promote TCAC ,

Oxidative phosphorylation \(\)

4. Pasteur Effect

- Under aerobic conditions, glycolysis is inhibited and this inhibitory effect of oxygen on glycolysis is known as Pasteur effect.
- The key point is NADH:
 NADH —> mitochondria
 Pyr —> TCAC —> CO₂ + H₂O
 Pyr can't produce to lactate.

APPLIED
ASPECTS
OF
TCA CYCLE

Mitochondrial encephalopathy occurs due to fumarase deficiency.

It is a mitochondrial myopathy affecting both the skeletal muscles and brain.